COMMUNIQUÉ

The European Commission and the industry continue joint efforts to serve the medical community

Brussels, 25 September 2013

In 2012, the European Observatory on the Supply of Medical Radioisotopes\(^1\) was created as an outcome of needs identified jointly by the Council of European Union, the European Commission and AIPES (the European industrial association of nuclear medicine).

Nuclear medicine and molecular imaging are emerging as unique tools to support the expansion of personalized medicine and to improve the healthcare economic model in Europe and across the world. More than 8 million patients benefit from these modalities in Europe each year.

During its last plenary meeting, the Observatory board reviewed the effectiveness of the actions launched from 2012 to 2013 for the provision of necessary nuclear medicine radioisotopes and has undertaken key actions to sustain their continuous supply in the future. These include:

- The Observatory recognises the efficiency of the actions launched from 2012 to 2013 for the supply of nuclear medicine radioisotopes.

The unexpected seven-month shutdown of a significant research reactor, HFR in Petten (The Netherlands), put the Observatory members under pressure to find other means to deliver every day the necessary radioisotopes to nuclear medicine patients. The challenge was completely fulfilled.

All European research reactor operators and their staff, with the continuous support of radioisotope processors, generator manufacturers and service providers such as transport companies, have worked remarkably well together to coordinate and ensure the necessary continuity of medical isotope production to the medical community. Non-European research reactors and processors have been also heavily involved with the Observatory in this process.

This coordination has been implemented in full compliance with the nuclear safety requirements.

• The Observatory board’s first priority is to focus on European radioisotope production throughout the period 2015-2020, which requires full consideration by the European institutions, the Member States of the EU, the regulators, the nuclear reactor operators and the industry. The issues encompass:

 o future decommissioning of aged research reactors after 2015,
 o commissioning schedule of new research reactors,
 o US policy consequences for the availability of Highly Enriched Uranium (HEU) supply through 2016 by US Department of Energy (for the manufacture of Uranium targets through 2017),
 o costs and timescales for the conversion processes from HEU to Low Enriched Uranium (LEU) targets.

All these independent issues need strong coordination and a robust policy within Europe (Europe is expected to be supplying more than half of the global needs during this period) and also coordination outside Europe.

• The Observatory board insists that all stakeholders provide an increased level of reliable consolidated data in Europe (both demand and supply) in terms of radioisotope capacity output. This data is essential to gauge the risk levels that can be anticipated in the 2015 to 2017 period. The data must be collected in compliance with competition regulations. Appropriate solutions must be found to meet patient needs while preserving the individual interests of each commercial party.

[signed]

Stamatios Tsalas, Guy Turquet de Beauregard,
Chairman Vice Chairman

Further information: admin@aipes-eeig.org

About the European Observatory

The European Observatory on the Supply of Medical Radioisotopes includes members from the European Commission, the Euratom Supply Agency, physicians, research and industry representatives and has the role of bringing together all relevant information concerning the security of supply of medical isotopes. The Observatory provides comprehensive information to the decision makers in the European Union, national governments, national and international official bodies, the medical community and the European industry in order to assist them in defining strategies, guidance and policies for the sustainable supply of medical radioisotopes, in particular Molybdenum-99, from which Technetium-99m, the most vital medical radioisotope, is derived.